Título: | DINÂMICAS MINIMAIS EM CONJUNTOS DE CANTOR E DIAGRAMAS DE BRATTELI | ||||||||||||
Autor: |
CAMILA SOBRINHO CRISPIM |
||||||||||||
Colaborador(es): |
LORENZO JUSTINIANO DIAZ CASADO - Orientador |
||||||||||||
Catalogação: | 16/JUN/2021 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53289&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53289&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53289 | ||||||||||||
Resumo: | |||||||||||||
Um diagrama de Bratteli B é um objeto combinatório representado por um grafo dividido em infinitos níveis, cada um com número finito de vértices e de arestas entre vértices de níveis consecutivos. Além disso, todo vértice possui ligação com vértices dos níveis precedente e sucessor. Estudamos, do ponto de vista topológico, o espaço dos caminhos infinitos formados pelas arestas de um diagrama de Bratteli, denotado por XB. Estabelecemos uma relação de equivalência neste espaço, denominada AF. Quando é possível definir uma ordem parcial em XB o diagrama é dito ordenado; neste caso, definimos um homeomorfismo em XB denominado de função de Bratteli-Vershik. Consideramos sistemas dinâmicos minimais definidos em conjuntos de Cantor e associamos a estes diagramas de Bratteli ordenados.
Um exemplo paradigmático de um conjunto de Cantor é o espaço das sequências infinitas formadas por 00s e 10s, munido de uma métrica apropriada. Neste espaço são definidas as funções odômetro. Definimos a relação de equivalência orbital, na qual duas sequências são equivalentes se estão na mesma órbita do odômetro, e a relação de equivalência de caudas, onde duas sequências são equivalentes se a partir de alguma entrada elas são iguais. Estudamos como estas duas relações estão relacionadas. Provamos que o odômetro diádico é um homeomorfismo minimal definido em um conjunto de Cantor e, portanto, pode
ser associado a um diagrama de Bratteli ordenado. Uma relação de equivalência é dita étale quando admite uma topologia gerada por uma ação local. Dois exemplos são as relações AF e orbital. Dada uma relação de equivalência étale R em um espaço X, definimos um invariante algébrico D(X,R). Construímos o grupo de dimensão de um diagrama de Bratteli. Provamos, então, que dado um diagrama de Bratteli B, seu grupo de
dimensão é isomorfo a D(XB,RB), onde RB é relação AF de B. Finalmente, estudamos sob quais condições um grupo abeliano ordenado é o grupo de dimensão de um diagrama de Bratteli. Esta dissertação é baseada no livro de Ian F. Putnam Cantor minimal systems, publicado em University Lecture Series, 70. American Mathematical Society, Providence, RI, 2018. [6].
|
|||||||||||||
|