Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COHOMOLOGIA DE FIBRADOS FLAG HOMOGÊNEOS
Autor: GUILHERME BRANDAO GUGLIELMO
Colaborador(es): DAVID FRANCISCO MARTINEZ TORRES - Orientador
Catalogação: 10/JUN/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53194&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53194&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53194
Resumo:
Esta dissertação tem como objetivo exibir uma fórmula para cálcular o anel de cohomologia de um fibrado flag homogêneo de um grupo de Lie G compacto e conexo. Para concluir o resultado é usado a cohomologia equivariante, em particular, sua abordagem mais algébrica. Isto implica introduzir G- módulos e sua teoria equivariante, o que passa também por introduzir a álgebra de Weil, o modelo de Cartan e o homomorfismo característico. A demonstração do resultado também está fortemente baseada nas propriedades algébricas dos toros maximais de G.
Descrição: Arquivo:   
NA ÍNTEGRA PDF