Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DISCRIMINAÇÃO DE POROS E TRINCAS EM PELOTAS DE MINÉRIO DE FERRO UTILIZANDO REDES NEURAIS
Autor: EMANUELLA TARCIANA VICENTE BEZERRA
Colaborador(es): SIDNEI PACIORNIK - Orientador
KAREN SOARES AUGUSTO - Coorientador
Catalogação: 20/MAI/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52815&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52815&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.52815
Resumo:
O processo de formação de pelotas de minério de ferro consiste na preparação das matérias-primas, formação da pelota crua e endurecimento por meio da queima. O produto final deve ser um material poroso que permita a difusão de gases no forno de redução e que, simultaneamente, resista a compressão, característica relevante durante o transporte e no carregamento do forno. No entanto, durante o tratamento térmico e o transporte podem surgir trincas que comprometem a integridade das pelotas. A discriminação de poros e trincas é, portanto, um importante fator para a análise microestrutural e controle de qualidade do material. A microtomografia de raios-x é uma técnica não destrutiva que gera imagens tridimensionais, o que permite uma visualização completa da pelota. No entanto, a metodologia usual de processamento digital de imagens, baseada em extração de atributos de tamanho e forma, apresenta limitações para discriminar poros de trincas. Redes Neurais Deep Learning são uma alternativa poderosa para classificar tipos de objetos em imagens, utilizando como entrada as intensidades dos pixels e atributos automaticamente determinados pela rede. Após treinar um modelo com os padrões correspondente a cada classe, é possível atribuir cada pixel da imagem a uma das classes presentes, permitindo uma segmentação semântica. Nesta dissertação, otimizou-se uma rede Deep Learning com arquitetura U-Net, usando como conjunto de treinamento poucas camadas 2D da imagem 3D original. Aplicando o modelo à pelota utilizada no treinamento foi possível discriminar poros de trincas de forma adequada. A aplicação do modelo a outras pelotas exigiu a incorporação de camadas destas pelotas ao treinamento e otimização de parâmetros do modelo. Os resultados apresentaram classificação adequada, apesar de apresentar dificuldades de criar um modelo geral para discriminação entre poros e trincas em pelotas de minério de ferro.
Descrição: Arquivo:   
NA ÍNTEGRA PDF