Título: | BUSCA PARAMÉTRICA PARA VARIANTES DO PROBLEMA DE ALOCAÇÃO DE RECURSO ANINHADO | ||||||||||||
Autor: |
JOAO PEDRO TEIXEIRA BRANDAO |
||||||||||||
Colaborador(es): |
THIBAUT VICTOR GASTON VIDAL - Orientador |
||||||||||||
Catalogação: | 13/ABR/2021 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52179&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52179&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.52179 | ||||||||||||
Resumo: | |||||||||||||
Os problemas de alocação de recurso procuram encontrar uma repartição ideal de recursos a um número fixo de áreas. Nesta dissertação, consideramos um problema de alocação de recurso com uma função objetiva linear e dois conjuntos distintos de restrições: um conjunto de restrições aninhados, onde as somas parciais das variáveis de decisão são limitadas por cima e uma restrição linear que define um hiperplano. Propomos um algoritmo fracamente e um fortemente polinomial. O algoritmo fracamente polinomial requer algumas suposições sobre os dados e possui complexidade de O(n log n log |Λ|/|I|), onde n é o número de variáveis, Λ é um intervalo no espaço dual, e |I| está relacionado com a precisão dos dados. O algoritmo fortemente polinomial é baseado na técnica de busca paramétrica de Megiddo e obtém uma complexidade O(n log n). As complexidades obtidas são superiores à complexidade do método genérico de Pontos Interiores, O(n 3/ log n). Além disso, uma análise experimental foi realizada e os algoritmos mostraram-se mais eficientes e produziram soluções ótimas para instâncias de problemas com até 1.000.000 variáveis.
|
|||||||||||||
|