Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: BUSCA PARAMÉTRICA PARA VARIANTES DO PROBLEMA DE ALOCAÇÃO DE RECURSO ANINHADO
Autor: JOAO PEDRO TEIXEIRA BRANDAO
Colaborador(es): THIBAUT VICTOR GASTON VIDAL - Orientador
Catalogação: 13/ABR/2021 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52179&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52179&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.52179
Resumo:
Os problemas de alocação de recurso procuram encontrar uma repartição ideal de recursos a um número fixo de áreas. Nesta dissertação, consideramos um problema de alocação de recurso com uma função objetiva linear e dois conjuntos distintos de restrições: um conjunto de restrições aninhados, onde as somas parciais das variáveis de decisão são limitadas por cima e uma restrição linear que define um hiperplano. Propomos um algoritmo fracamente e um fortemente polinomial. O algoritmo fracamente polinomial requer algumas suposições sobre os dados e possui complexidade de O(n log n log |Λ|/|I|), onde n é o número de variáveis, Λ é um intervalo no espaço dual, e |I| está relacionado com a precisão dos dados. O algoritmo fortemente polinomial é baseado na técnica de busca paramétrica de Megiddo e obtém uma complexidade O(n log n). As complexidades obtidas são superiores à complexidade do método genérico de Pontos Interiores, O(n 3/ log n). Além disso, uma análise experimental foi realizada e os algoritmos mostraram-se mais eficientes e produziram soluções ótimas para instâncias de problemas com até 1.000.000 variáveis.
Descrição: Arquivo:   
NA ÍNTEGRA PDF