Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: O PROBLEMA MULTI-PERÍODO DA ÁRVORE DE STEINER COM COLETAS DE PRÊMIOS E RESTRIÇÕES DE ORÇAMENTO
Autor: LARISSA FIGUEIREDO TERRA DE FARIA
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
DAVID SOTELO PINHEIRO DA SILVA - Coorientador
Catalogação: 26/JAN/2021 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51356&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51356&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51356
Resumo:
Esta tese generaliza a variante multi-período do clássico problema da Árvore de Steiner com coleta de prêmios (PCST), que visa encontrar um subgrafo conexo que maximize os prêmios recuperados de nós conectados menos o custo de utilização das arestas conectadas. Este trabalho adicionalmente: (a) permite que vértices sejam conectados à árvore em diferentes períodos de tempo; (b) impõe um orçamento pré-definido em arestas selecionadas em um horizonte específico de períodos de tempo; e (c) limita o comprimento total de arestas que podem ser adicionadas em um período de tempo. Um algoritmo branch-and-cut é fornecido para este problema, avaliando satisfatoriamente instâncias benchmark da literatura, adaptadas para uma configuração multi-período, de até aproximadamente 2000 vértices e 200 terminais em tempo razoável.
Descrição: Arquivo:   
NA ÍNTEGRA PDF