Título: | APRENDIZADO EM DOIS ESTÁGIOS PARA MÉTODOS DE COMITÉ DE ÁRVORES DE DECISÃO | ||||||||||||
Autor: |
ALEXANDRE WERNECK ANDREZA |
||||||||||||
Colaborador(es): |
MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Orientador |
||||||||||||
Catalogação: | 23/NOV/2020 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50394&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50394&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.50394 | ||||||||||||
Resumo: | |||||||||||||
Tree ensemble methods são reconhecidamente métodos de sucesso em problemas de aprendizado supervisionado, bem como são comumente descritos como métodos resistentes ao overfitting. A proposta deste trabalho é investigar essa característica a partir de modelos que extrapolem essa resistência. Ao prever uma instância de exemplo, os métodos de conjuntos são capazes de identificar a folha onde essa instância ocorre em cada uma das árvores. Nosso método então procura identificar uma nova função sobre todas as folhas deste conjunto, minimizando uma função de perda no conjunto de treino. Uma das maneiras de definir conceitualmente essa proposta é interpretar nosso modelo como um gerador automático de features ou um otimizador de predição.
|
|||||||||||||
|