Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: EXTRAÇÃO E CONEXÃO ENTRE PEDIDOS E DECISÕES JUDICIAIS DE UM TRIBUNAL BRASILEIRO
Autor: WILLIAM PAULO DUCCA FERNANDES
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
SIMONE DINIZ JUNQUEIRA BARBOSA - Coorientador
Catalogação: 03/NOV/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50158&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50158&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.50158
Resumo:
Neste trabalho, propomos uma metodologia para anotar decisões judiciais, criar modelos de Deep Learning para extração de informação, e visualizar de forma agregada a informação extraída das decisões. Instanciamos a metodologia em dois sistemas. O primeiro extrai modificações de um tribunal de segunda instância, que consiste em um conjunto de categorias legais que são comumente modificadas pelos tribunais de segunda instância. O segundo (i) extrai as causas que motivaram uma pessoa a propor uma ação judicial (causa de pedir), os pedidos do autor e os provimentos judiciais dessas ações proferidas pela primeira e segunda instância de um tribunal, e (ii) conecta os pedidos com os provimentos judiciais correspondentes. O sistema apresenta seus resultados através de visualizações. Extração de Informação para textos legais tem sido abordada usando diferentes técnicas e idiomas. Nossas propostas diferem dos trabalhos anteriores, pois nossos corpora são compostos por decisões de primeira e segunda instância de um tribunal brasileiro. Para extrair as informações, usamos uma abordagem tradicional de Aprendizado de Máquina e outra usando Deep Learning, tanto individualmente quanto como uma solução combinada. Para treinar e avaliar os sistemas, construímos quatro corpora: Kauane Junior para o primeiro sistema, e Kauane Insurance Report, Kauane Insurance Lower e Kauane Insurance Upper para o segundo. Usamos dados públicos disponibilizados pelo Tribunal de Justiça do Estado do Rio de Janeiro para construir os corpora. Para o Kauane Junior, o melhor modelo (Fbeta=1 de 94.79 por cento) foi uma rede neural bidirecional Long Short-Term Memory combinada com Conditional Random Fields (BILSTM-CRF); para o Kauane Insurance Report, o melhor (Fbeta=1 de 67,15 por cento) foi uma rede neural bidirecional Long Short-Term Memory com embeddings de caracteres concatenados a embeddings de palavras combinada com Conditional Random Fields (BILSTM-CE-CRF). Para o Kauane Insurance Lower, o melhor (Fbeta=1 de 89,12 por cento) foi uma BILSTM-CE-CRF; para o Kauane Insurance Upper, uma BILSTM-CRF (Fbeta=1 de 83,66 por cento).
Descrição: Arquivo:   
NA ÍNTEGRA PDF