Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: UM ALGORITMO DE SIM-HEURISTICA PARA UM PROBLEMA ESTOCÁSTICO DE PERMUTATION FLOW-SHOP SCHEDULING COM DATAS DE ENTREGA E GANHOS CUMULATIVOS
Autor: PEDRO ARAUJO VILLARINHO
Colaborador(es): LUCIANA DE SOUZA PESSOA - Orientador
FERNANDO LUIZ CYRINO OLIVEIRA - Coorientador
Catalogação: 19/OUT/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49945&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49945&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.49945
Resumo:
Esta dissertação de mestrado analisa um problema de programação de máquinas em série com datas de entrega e ganhos cumulativos sob incerteza. Em particular, este trabalho considera situações reais na quais os tempos de processamento e datas de liberação são estocásticos. O objetivo principal deste trabalho é a resolução deste problema de programação de máquinas em série em um ambiente estocástico buscando analisar a relação entre diferentes niveis de incerteza e o benefício esperado. Visando atingir este objetivo, primeiramente uma heurística é proposta utilizando-se da técnica de biased-randomization para a versão determinística do problema. Então, esta heurística é extendida para uma metaheurística a partir do encapsulamento dentro da estrutura de um variable neighborhood descend. Finalmente, a metaheurística é extendida para uma simheurística a partir da incorporação da simulação de Monte Carlo. De acordo com os experimentos computacionais, o nível de incerteza tem um impacto direto nas soluções geradas pela simheurística. Além disso, análise de risco foram desenvolvidas utilizando as conhecidas métricas de risco: value at risk e conditional value at risk.
Descrição: Arquivo:   
NA ÍNTEGRA PDF