Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RESULTADOS TEÓRICOS E EXPERIMENTAIS EM CLUSTERIZAÇÃO COM MÉTRICAS DE TEORIA DA INFORMAÇÃO
Autor: LUCAS SAADI MURTINHO
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 21/SET/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49518&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49518&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.49518
Resumo:
Esta dissertação apresenta resultados teóricos e experimentais relativos ao problema de clusterização de um conjunto de vetores (que possam ser interpretados como distribuições de probabilidade) com o objetivo de minimizar uma medida de impureza da partição resultante. Por meio de uma conexão entre o problema geométrico de k-médias e o problema de clusterização para minimizar a impureza ponderada de Gini da partição, prova-se que este último é NP-completo e APX-difícil. Também analisamos uma família de algoritmos para clusterização com base nas componentes dominantes (as maiores componentes) dos vetores a serem particionados. Mostra-se que, em alguns casos, dois desses algoritmos conseguem obter bons resultados em termos da entropia ponderada da partição resultante, em um tempo bem menor do que os algoritmos considerados como o estado da arte.
Descrição: Arquivo:   
NA ÍNTEGRA PDF