Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ESTRUTURAS ARITMÉTICAS EM CONJUNTOS ALEATÓRIOS
Autor: MATHEUS SECCO TORRES DA SILVA
Colaborador(es): SIMON RICHARD GRIFFITHS - Orientador
Catalogação: 08/SET/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49323&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49323&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.49323
Resumo:
Nesta tese de Doutorado, nós estudamos cotas para as probabilidades de desvio de uma variável aleatória X que conta o número de arestas de um hipergrafo induzido por um subconjunto aleatório de m elementos do seu conjunto de vértices. Nós consideramos dois contextos: o primeiro corresponde a hipergrafos que possuem certo tipo de regularidade, ao passo que o segundo lida com hipergrafos que são, em algum sentido, longe de serem regulares. É possível aplicar estes resultados a estruturas discretas, como o conjunto de progressões aritméticas de tamanho k no grupo aditivo de inteiros módulo um primo e também no conjunto dos N primeiros inteiros positivos. Além disso, também deduzimos resultados para o caso em que o subconjunto aleatório é gerado incluindo cada vértice do hipergrafo independentemente com probabilidade p.
Descrição: Arquivo:   
NA ÍNTEGRA PDF