Título: | SISTEMAS AUTÔNOMOS EXPLICÁVEIS POR MEIO DE PROVENIÊNCIA DE DADOS | ||||||||||||
Autor: |
TASSIO FERENZINI MARTINS SIRQUEIRA |
||||||||||||
Colaborador(es): |
CARLOS JOSE PEREIRA DE LUCENA - Orientador |
||||||||||||
Catalogação: | 25/JUN/2020 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48782&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48782&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.48782 | ||||||||||||
Resumo: | |||||||||||||
Determinar a proveniência dos dados, isto é, o processo que levou a
esses dados, é vital em muitas áreas, especialmente quando é essencial que
os resultados ou ações sejam confiáveis. Com o crescente número de aplicações
baseadas em inteligência artificial, criou-se a necessidade de torná-las
capazes de explicar seu comportamento e responder às suas decisões. Isso é
um desafio, especialmente se as aplicações forem distribuídas e compostas de
vários agentes autônomos, formando um Sistema Multiagente (SMA). Uma
maneira fundamental de tornar tais sistemas explicáveis é rastrear o comportamento
do agente, isto é, registrar a origem de suas ações e raciocínios,
como em uma depuração onisciente. Embora a ideia de proveniência já
tenha sido explorada em alguns contextos, ela não foi extensivamente explorada
no contexto de SMA, deixando muitas questões para serem compreendidas
e abordadas. Nosso objetivo neste trabalho é justificar a importância
da proveniência dos dados para SMA, discutindo quais perguntas
podem ser respondidas em relação ao comportamento do SMA, utilizando
a proveniência e ilustrando, através de cenários de aplicação, os benefícios
que a proveniência proporciona para responder a essas questões. Este estudo
envolve a criação de um framework de software, chamado FProvW3C,
que suporta a coleta e armazenamento da proveniência dos dados produzidos
pelo SMA, que foi integrado a plataforma BDI4JADE (41), formando
o que denominamos de Prov-BDI4JADE. Por meio desta plataforma, utilizando
exemplos de sistemas autônomos, demostramos com rigor que, o
uso da proveniência de dados em SMA é uma solução sólida, para tornar
transparente o processo de raciocínio e ação do agente.
|
|||||||||||||
|