Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DESENVOLVIMENTO E VALIDAÇÃO DE SENSOR LIDAR VIRTUAL
Autor: GUILHERME FERREIRA GUSMAO
Colaborador(es): CARLOS ROBERTO HALL BARBOSA - Orientador
ALBERTO BARBOSA RAPOSO - Coorientador
Catalogação: 25/JUN/2020 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48781&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48781&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48781
Resumo:
As tecnologias de imageamento em três dimensões (3D) vêm tendo seu uso cada vez mais disseminado no meio acadêmico e no setor industrial, especialmente na forma de nuvens de pontos, uma representação matemática da geometria e superfície de um objeto ou área. No entanto, a obtenção desses dados pode ainda ser cara e demorada, reduzindo a eficiência de muitos procedimentos que são dependentes de um grande conjunto de nuvens de pontos, como a geração de datasets para treinamento de aprendizagem de máquina, cálculo de dossel florestal e inspeção submarina. Uma solução atualmente em voga é a criação de simuladores computacionais de sistemas de imageamento, realizando o escaneamento virtual de um cenário feito a partir de arquivos de objetos 3D. Este trabalho apresenta o desenvolvimento de um simulador de sistema LiDAR (light detection and ranging) baseado em algoritmos de rastreamento de raio com paralelismo (GPU raytracing), com o sensor virtual modelado por parâmetros metrológicos e calibrado por meio de comparação com um sensor real, juntamente com um gerador flexível de cenários virtuais. A combinação destas ferramentas no simulador resultou em uma geração robusta de nuvens de pontos sintéticas em cenários diversos, possibilitando a criação de datasets para uso em testes de conceitos, combinação de dados reais e virtuais, entre outras aplicações.
Descrição: Arquivo:   
NA ÍNTEGRA PDF