Título: | OTIMIZAÇÃO DE PROCESSO PARA PRODUÇÃO DO COAGULANTE SULFATO FÉRRICO PELA OXIDAÇÃO DE SULFATO FERROSO COM PERÓXIDO DE HIDROGÊNIO | ||||||||||||
Autor: |
VERONICA BARBOSA MAZZA |
||||||||||||
Colaborador(es): |
LUIZ ALBERTO CESAR TEIXEIRA - Orientador ANA ROSA FONSECA DE AGUIAR MARTINS - Coorientador |
||||||||||||
Catalogação: | 25/MAR/2020 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47247&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47247&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.47247 | ||||||||||||
Resumo: | |||||||||||||
Sabe-se que o coagulante sulfato férrico pode ser obtido através da reação de oxidação entre sulfato ferroso e peróxido de hidrogênio em meio ácido. Porém, o método conhecido de obtenção deste coagulante em escala industrial utilizando o peróxido de hidrogênio como agente oxidante não proporciona condições
economicamente atrativas, frente aos demais processos. Este potente agente oxidante sofre forte influência da temperatura e da presença de íons ferro no seu processo de auto decomposição em água e oxigênio. Pode-se considerar que as condições do meio reacional, na etapa de adição do agente oxidante, são os fatores determinantes para a produção do coagulante férrico com o maior aproveitamento do peróxido de hidrogênio adicionado. O presente trabalho teve como objetivo investigar as condições necessárias para a produção do coagulante férrico utilizando o peróxido de hidrogênio, em um processo economicamente competitivo. A pesquisa foi fundamentada nas técnicas de planejamento de experimentos e otimização de
processos. A modelagem matemática do processo possibilitou a definição da magnitude dos parâmetros a serem utilizados otimizando o processo e a especificação das características desejadas do produto final. As variáveis independentes estudadas na modelagem matemática foram: temperatura (7,5 – 27,5 graus celsius), quantidade de peróxido de hidrogênio (100 – 300 porcento) referente à sua quantidade estequiométrica e a diluição do meio utilizando água (100 – 300 porcento) referente à sua quantidade estequiométrica. As quantidades estequiométricas dos reagentes foram determinadas visando ao atingimento das especificações de um coagulante férrico comercial. O modelo desenvolvido foi sobre a Conversão de Fe2(+) em Fe3(+) (porcento) e avaliado através da Análise da Variância (ANOVA). As condições ótimas escolhidas para o ponto ótimo foram: temperatura igual a 17,5 graus celsius, 150 porcento da quantidade estequiométrica de peróxido de hidrogênio e 200 porcento da quantidade
estequiométrica de água. A resposta da etapa de otimização indicou uma conversão de 96,17 porcento de Fe2(+) em Fe3(+), resultando em um coagulante dentro dos padrões especificados por norma técnica. O modelo matemático obtido previu uma conversão de 96,13 porcento de Fe2(+) em Fe3(+), resultando em um erro percentual de 0,043 porcento entre o resultado predito pelo modelo matemático e o resultado experimental. As análises das superfícies de resposta e da quantidade de peróxido de hidrogênio residual em solução indicaram que o controle do processo em baixas temperaturas contribui para o melhor aproveitamento do peróxido de hidrogênio na conversão de Fe2(+) em Fe3(+), devido à desaceleração da auto decomposição incitada pelo fator temperatura. A análise do potencial de redução ao longo da reação em função do perfil de conversão mostrou que conversões acima de 90 porcento de Fe2(+) em Fe3(+) apresentaram potencial redox (Eh) correspondente acima de 0,70 Volts, indicando a possibilidade da utilização deste parâmetro no controle da conversão em processos industriais.
|
|||||||||||||
|