Título: | MÉTODO HÍBRIDO BASEADO EM FILTRO DE KALMAN E MODELOS GENERATIVOS DE APRENDIZAGEM PROFUNDA NO AJUSTE DE HISTÓRICO SOB INCERTEZAS PARA MODELOS DE FÁCIES GEOLÓGICAS | ||||||||||||
Autor: |
SMITH WASHINGTON ARAUCO CANCHUMUNI |
||||||||||||
Colaborador(es): |
MARCO AURELIO CAVALCANTI PACHECO - Orientador ALEXANDRE ANOZE EMERICK - Coorientador |
||||||||||||
Catalogação: | 25/MAR/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37478&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37478&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.37478 | ||||||||||||
Resumo: | |||||||||||||
Os métodos baseados no filtro de Kalman têm tido sucesso notável na
indústria do petróleo nos últimos anos, especialmente, para resolver problemas
reais de ajuste de histórico. No entanto, como a formulação desses métodos
é baseada em hipóteses de gaussianidade e linearidade, seu desempenho
é severamente degradado quando a geologia a priori é descrita em termos
de distribuições complexas (e.g. modelos de fácies). A tendência atual em
soluções para o problema de ajuste de histórico é levar em consideração
modelos de reservatórios mais realistas com geologia complexa. Assim, a
modelagem de fácies geológicas desempenha um papel importante na caracterização
de reservatórios, como forma de reproduzir padrões importantes
de heterogeneidade e facilitar a modelagem das propriedades petrofísicas
das rochas do reservatório. Esta tese introduz uma nova metodologia para
realizar o ajuste de histórico de modelos geológicos complexos. A metodologia
consiste na integração de métodos baseados no filtro de Kalman em
particular o método conhecido na literatura como Ensemble Smoother with
Multiple Data Assimilation (ES-MDA), com uma parametrização das fácies
geológicas por meio de técnicas baseadas em aprendizado profundo (Deep
Learning) em arquiteturas do tipo autoencoder. Um autoencoder sempre
consiste em duas partes, o codificador (modelo de reconhecimento) e o decodificador
(modelo gerador). O procedimento começa com o treinamento de
um conjunto de realizações de fácies por meio de algoritmos de aprendizado
profundo, através do qual são identificadas as principais características das
imagens de fácies geológicas, permitindo criar novas realizações com as mesmas
características da base de treinamento com uma reduzida parametrização
dos modelos de fácies na saída do codificador. Essa parametrização é
regularizada no codificador para fornecer uma distribuição gaussiana na
saída, a qual é utilizada para atualizar os modelos de fácies de acordo com
os dados observados do reservatório, através do método ES-MDA. Ao final,
os modelos atualizados são reconstruídos através do aprendizado profundo
(decodificador), com o objetivo de obter modelos finais que apresentem características
similares às da base de treinamento.
Os resultados, em três casos de estudo com 2 e 3 fácies, mostram que
a parametrização de modelos de fácies baseada no aprendizado profundo
consegue reconstruir os modelos de fácies com um erro inferior a 0,3 por cento. A
metodologia proposta gera modelos geológicos ajustados que conservam a
descrição geológica a priori do reservatório (fácies com canais curvilíneos),
além de ser consistente com o ajuste dos dados observados do reservatório.
|
|||||||||||||
|