Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ABORDAGENS DE INFERÊNCIA EVOLUCIONÁRIA EM MODELOS ADAPTATIVOS
Autor: EDISON AMERICO HUARSAYA TITO
Colaborador(es): MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Orientador
Catalogação: 17/JUL/2003 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3726&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3726&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.3726
Resumo:
Em muitas aplicações reais de processamento de sinais, as observações do fenômeno em estudo chegam seqüencialmente no tempo. Consequentemente, a tarefa de análise destes dados envolve estimar quantidades desconhecidas em cada observação concebida do fenômeno. Na maioria destas aplicações, entretanto, algum conhecimento prévio sobre o fenômeno a ser modelado está disponível. Este conhecimento prévio permite formular modelos Bayesianos, isto é, uma distribuição a priori sobre as quantidades desconhecidas e uma função de verossimilhança relacionando estas quantidades com as observações do fenômeno. Dentro desta configuração, a inferência Bayesiana das quantidades desconhecidas é baseada na distribuição a posteriori, que é obtida através do teorema de Bayes. Infelizmente, nem sempre é possível obter uma solução analítica exata para esta distribuição a posteriori. Graças ao advento de um formidável poder computacional a baixo custo, em conjunto com os recentes desenvolvimentos na área de simulações estocásticas, este problema tem sido superado, uma vez que esta distribuição a posteriori pode ser aproximada numericamente através de uma distribuição discreta, formada por um conjunto de amostras. Neste contexto, este trabalho aborda o campo de simulações estocásticas sob a ótica da genética Mendeliana e do princípio evolucionário da sobrevivência dos mais aptos. Neste enfoque, o conjunto de amostras que aproxima a distribuição a posteriori pode ser visto como uma população de indivíduos que tentam sobreviver num ambiente Darwiniano, sendo o indivíduo mais forte, aquele que possui maior probabilidade. Com base nesta analogia, introduziu-se na área de simulações estocásticas (a) novas definições de núcleos de transição inspirados nos operadores genéticos de cruzamento e mutação e (b) novas definições para a probabilidade de aceitação, inspirados no esquema de seleção, presente nos Algoritmos Genéticos. Como contribuição deste trabalho está o estabelecimento de uma equivalência entre o teorema de Bayes e o princípio evolucionário, permitindo, assim, o desenvolvimento de um novo mecanismo de busca da solução ótima das quantidades desconhecidas, denominado de inferência evolucionária. Destacamse também: (a) o desenvolvimento do Filtro de Partículas Genéticas, que é um algoritmo de aprendizado online e (b) o Filtro Evolutivo, que é um algoritmo de aprendizado batch. Além disso, mostra-se que o Filtro Evolutivo, é em essência um Algoritmo Genético pois, além da sua capacidade de convergência a distribuições de probabilidade, o Filtro Evolutivo converge também a sua moda global. Em conseqüência, a fundamentação teórica do Filtro Evolutivo demonstra, analiticamente, a convergência dos Algoritmos Genéticos em espaços contínuos. Com base na análise teórica de convergência dos algoritmos de aprendizado baseados na inferência evolucionária e nos resultados dos experimentos numéricos, comprova-se que esta abordagem se aplica a problemas reais de processamento de sinais, uma vez que permite analisar sinais complexos caracterizados por comportamentos não-lineares, não- gaussianos e nãoestacionários.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF