Título: | ANÁLISE DE DEPENDÊNCIA BASEADA EM TRANSIÇÃO APLICADA A UNIVERSAL DEPENDENCIES | ||||||||||||
Autor: |
CESAR DE SOUZA BOUCAS |
||||||||||||
Colaborador(es): |
RUY LUIZ MILIDIU - Orientador |
||||||||||||
Catalogação: | 11/FEV/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36740&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36740&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36740 | ||||||||||||
Resumo: | |||||||||||||
Análise de dependência consiste em obter uma estrutura sintática
correspondente a determinado texto da linguagem natural. Tal estrutura,
usualmente uma árvore de dependência, representa relações hierárquicas
entre palavras. Representação computacionalmente eficiente que vem sendo
utilizada para lidar com desafios que surgem com o crescente volume de
informação textual online. Podendo ser utilizada, por exemplo, para inferir
computacionalmente o significado de palavras das mais diversas línguas.
Este trabalho apresenta a análise de dependência com enfoque em uma de
suas modelagens mais populares em aprendizado de máquina: o método
baseado em transição. Desenvolvemos uma implementação gulosa deste
modelo com um classificador neural simples para executar experimentos.
Datasets da iniciativa Universal Dependencies são utilizados para treinar e
posteriormente testar o sistema com a validação disponibilizada na tarefa
compartilhada da CoNLL-2017. Os resultados mostram empiricamente que
se pode obter ganho de performance inicializando a camada de entrada
da rede neural com uma representação de palavras obtida com pré-treino.
Chegando a uma performance de 84,51 LAS no conjunto de teste da
língua portuguesa do Brasil e 75,19 LAS no conjunto da língua inglesa.
Ficando cerca de 4 pontos atrás da performance do melhor resultado para
analisadores de dependência baseados em sistemas de transição.
|
|||||||||||||
|