Título: | QUASE PERIODICIDADE E A POSITIVIDADE DOS EXPOENTES DE LYAPUNOV | ||||||||||||
Autor: |
LUCAS BARBOSA GAMA |
||||||||||||
Colaborador(es): |
SILVIUS KLEIN - Orientador |
||||||||||||
Catalogação: | 11/JAN/2019 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36075&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36075&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36075 | ||||||||||||
Resumo: | |||||||||||||
O teorema de Benedicks e Carleson afirma que para a família quadrática existe um conjunto de parâmetros, com medida positiva, para os quais o expoente de Lyapunov é positivo no ponto crítico. Nesta dissertação apresentamos uma demonstração rigorosa e detalhada desse célebre resultado. Uma parte importante da demonstração é o estudo do comportamento quase periódico de um conjunto de órbitas. Além disso, um argumento de grandes desvios é utilizado para mostrar que os parâmetros que não satisfazem a propriedade desejada formam um conjunto pequeno. Tais técnicas apresentam um interesse intrínseco, já que têm se mostrado muito proveitosas para o estudo de outros problemas em sistemas dinâmicos. Combinando o teorema de Benedicks e Carleson ao teorema de Singer, conclui-se que para
um conjunto de parâmetros com medida positiva, a função quadrática correspondente não admite atratores periódicos, indicando um comportamento caótico. Neste trabalho, também são estudados critérios para a positividade do expoente de Lyapunov de cociclos quase periódicos de Schrodinger, como o teorema de Herman. O estudo de cociclos de Schrodinger representa um importante tópico na área de física matemática. Mais ainda, algumas das generalizações de tais critérios utilizam as técnicas de Benedicks-Carleson.
|
|||||||||||||
|