Título: | ESTRATÉGIAS DE MODELAGEM E OTIMIZAÇÃO APLICADAS AO PROCESSO DE DESLIGNIZAÇÃO DO BAGAÇO DA CANA-DE-AÇÚCAR | ||||||||||||
Autor: |
ISABELLE CUNHA VALIM |
||||||||||||
Colaborador(es): |
BRUNNO FERREIRA DOS SANTOS - Orientador CECILIA VILANI - Coorientador |
||||||||||||
Catalogação: | 07/JAN/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35985&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35985&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.35985 | ||||||||||||
Resumo: | |||||||||||||
O bagaço da cana-de-açúcar é uma biomassa vegetal que possui muito potencial
de uso devido aos seus três elementos estruturais: celulose, hemicelulose
e lignina. Para servir como matéria prima na produção de insumos, o bagaço
da cana-de-açúcar precisa passar por um processo de pré-tratamento. Nesse
estudo, duas metodologias para o processo de pré-tratamento do bagaço da
cana-de-açúcar foram utilizadas: a deslignização via peróxido de hidrogênio
(H2O2) e via dióxido de carbono supercrítico (ScCO2). Para o estudo utilizando
H2O2, foram desenvolvidos modelos a partir de planejamento experimental,
Algoritmos Genéticos (GA, do inglês Genetic Algorithms), Redes
Neurais Artificiais (RNA) e Neuro-Fuzzy (ANFIS). As variáveis independentes
foram temperatura (25 – 60 graus Celsius), concentração de H2O2 (2 – 15 por cento
m/v) e pH (10 – 13), tendo como resposta os teores de lignina residual e
oxidada no processo, através de análises de FT-IR e análise pelo método
de Klason. Para o estudo utilizando ScCO2 foram construídos modelos a
partir de RNA e ANFIS. As variáveis estudadas no processo foram: temperatura
(35 – 100 graus Celsius), pressão (75- 300 bar) e teor de etanol na solução de
co-solvente (0 – 100 graus Celsius). De modo geral, para os dois processos, os modelos
desenvolvidos consideram as variáveis independentes como sendo neurônios
na camada de entrada e as variáveis dependentes como sendo neurônios na
camada de saída. Todos os modelos neurais e ANFIS desenvolvidos neste
trabalho foram avaliados pelo coeficiente de correlação e índices de
erro (SSE, MSE e RMSE), além do número de parâmetros. Os resultados
mostraram que, dentre estas estratégias estudadas, os modelos neurais se
mostraram mais satisfatórios para predição das respostas do pré-tratamento
com H2O2, já que se encaixa nos índices de performance estipulados. O
mesmo ocorreu no modelo neural para predição do teor de lignina residual
no pré-tratamento com ScCO2. Para cada modelo polinomial e neural desenvolvido,
foi realizada a investigação das superfícies de respostas e das
curvas de contorno. Com esse recurso, foi possível a identificação dos melhores
pontos operacionais para os processos, visando a minimização dos
teores de lignina residual e oxidada na biomassa.
|
|||||||||||||
|