Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MATEURÍSTICAS PARA VARIANTES DO PROBLEMA DO CONJUNTO DOMINANTE
Autor: MAYRA CARVALHO ALBUQUERQUE
Colaborador(es): THIBAUT VICTOR GASTON VIDAL - Orientador
Catalogação: 14/JUN/2018 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34169&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34169&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.34169
Resumo:
Esta tese faz um estudo do problema do Conjunto Dominante, um problema NP-difícil de grande relevância em aplicações relacionadas ao projeto de rede sem fio, mineração de dados, teoria de códigos, dentre outras. O conjunto dominante mínimo em um grafo é um conjunto mínimo de vértices de modo que cada vértice do grafo pertence a este conjunto ou é adjacente a um vértice que pertence a ele. Três variantes do problema foram estudadas; primeiro, uma variante na qual considera pesos nos vértices, buscando um conjunto dominante com menor peso total; segundo, uma variante onde o subgrafo induzido pelo conjunto dominante está conectado; e, finalmente, a variante que engloba essas duas características. Para resolver esses três problemas, propõe-se um algoritmo híbrido baseado na meta-heurística busca tabu com componentes adicionais de programação matemática, resultando em um método por vezes chamado de mateurística, (matheuristic, em inglês). Diversas técnicas adicionais e vizinhanças largas foram propostas afim de alcançar regiões promissoras no espaço de busca. Análises experimentais demonstram a contribuição individual de todos esses componentes. Finalmente, o algoritmo é testado no problema do código de cobertura mínima, que pode ser visto como um caso especial do problema do conjunto dominante. Os códigos são estudados na métrica Hamming e na métrica Rosenbloom-Tsfasman. Neste último, diversos códigos menores foram encontrados.
Descrição: Arquivo:   
NA ÍNTEGRA PDF