Título: | MAPEAMENTO DA DISTRIBUIÇÃO POPULACIONAL ATRAVÉS DA DETECÇÃO DE ÁREAS EDIFICADAS EM IMAGENS DE REGIÕES HETEROGÊNEAS DO GOOGLE EARTH USANDO DEEP LEARNING | ||||||||||||
Autor: |
CASSIO FREITAS PEREIRA DE ALMEIDA |
||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador |
||||||||||||
Catalogação: | 08/FEV/2018 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32969&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32969&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.32969 | ||||||||||||
Resumo: | |||||||||||||
Informações precisas sobre a distribuição da população são reconhecidamente importantes. A fonte de informação mais completa sobre a população é o censo, cujos os dados são disponibilizados de forma
agregada em setores censitários. Esses setores são unidades operacionais de tamanho e formas irregulares, que dificulta a análise espacial dos dados associados. Assim, a mudança de setores censitários para um conjunto de células regulares com estimativas adequadas facilitaria a análise. Uma metodologia a ser utilizada para essa mudança poderia ser baseada na classificação de imagens de sensoriamento remoto para a identificação de domicílios, que é a base das pesquisas envolvendo a população. A detecção de áreas edificadas é uma tarefa complexa devido a grande variabilidade de características de construção e de imagens. Os métodos usuais são complexos e muito dependentes de especialistas. Os processos automáticos dependem de grandes bases de imagens para treinamento e são sensíveis à variação de qualidade de imagens e características das construções e de ambiente. Nesta tese propomos a utilização de um método automatizado para detecção de edificações em imagens Google Earth que mostrou bons
resultados utilizando um conjunto de imagens relativamente pequeno e com grande variabilidade, superando as limitações dos processos existentes. Este resultado foi obtido com uma aplicação prática. Foi construído um conjunto de imagens com anotação de áreas construídas para 12 regiões do Brasil. Estas imagens, além de diferentes na qualidade, apresentam grande variabilidade nas características das edificações e no ambiente geográfico. Uma prova de conceito será feita na utilização da classificação de área construída nos métodos dasimétrico para a estimação de população em gride. Ela mostrou um resultado promissor quando comparado com o método usual, possibilitando a melhoria da qualidade das estimativas.
|
|||||||||||||
|