Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: LSHSIM: UM MÉTODO DE GEOESTATÍSTICA MULTIPONTO BASEADO EM LOCALITY SENSITIVITY HASHING
Autor: PEDRO NUNO DE SOUZA MOURA
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 14/NOV/2017 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32005&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=32005&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.32005
Resumo:
A modelagem de reservatórios consiste em uma tarefa de muita relevância na medida em que permite a representação de uma dada região geológica de interesse. Dada a incerteza envolvida no processo, deseja-se gerar uma grande quantidade de cenários possíveis para se determinar aquele que melhor representa essa região. Há, então, uma forte demanda de se gerar rapidamente cada simulação. Desde a sua origem, diversas metodologias foram propostas para esse propósito e, nas últimas duas décadas, Multiple-Point Geostatistics (MPS) passou a ser a dominante. Essa metodologia é fortemente baseada no conceito de imagem de treinamento (TI) e no uso de suas características, que são denominadas de padrões. No presente trabalho, é proposto um novo método de MPS que combina a aplicação de dois conceitos-chave: a técnica denominada Locality Sensitive Hashing (LSH), que permite a aceleração da busca por padrões similares a um dado objetivo; e a técnica de compressão Run-Length Encoding (RLE), utilizada para acelerar o cálculo da similaridade de Hamming. Foram realizados experimentos com imagens de treinamento tanto categóricas quanto contínuas que evidenciaram que o LSHSIM é computacionalmente eficiente e produz realizações de boa qualidade, enquanto gera um espaço de incerteza de tamanho razoável. Em particular, para dados categóricos, os resultados sugerem que o LSHSIM é mais rápido do que o MS-CCSIM, que corresponde a um dos métodos componentes do estado-da-arte.
Descrição: Arquivo:   
NA ÍNTEGRA PDF