Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RESOLUÇÃO DE CO-REFERÊNCIA PARA A LÍNGUA INGLESA
Autor: ADRIEL GARCIA HERNANDEZ
Colaborador(es): RUY LUIZ MILIDIU - Orientador
Catalogação: 28/JUL/2017 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=30730&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=30730&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.30730
Resumo:
Um dos problemas encontrados nos sistemas de processamento de linguagem natural é a dificuldade em identificar elementos textuais que se referem à mesma entidade. Este fenômeno é chamado de correferência. Resolver esse problema é parte integrante da compreensão do discurso, permitindo que os usuários da linguagem conectem as partes da informação de fala relativas à mesma entidade. Por conseguinte, a resolução de correferência é um importante foco de atenção no processamento da linguagem natural.Apesar da riqueza das pesquisas existentes, o desempenho atual dos sistemas de resolução de correferência ainda não atingiu um nível satisfatório. Neste trabalho, descrevemos um sistema de aprendizado estruturado para resolução de correferências em restrições que explora duas técnicas: árvores de correferência latente e indução automática de atributos guiadas por entropia. A modelagem de árvore latente torna o problema de aprendizagem computacionalmente viável porque incorpora uma estrutura escondida relevante. Além disso, utilizando um método automático de indução de recursos, podemos construir eficientemente modelos não-lineares, usando algoritmos de aprendizado de modelo linear como, por exemplo, o algoritmo de perceptron estruturado e esparso.Nós avaliamos o sistema para textos em inglês, utilizando o conjunto de dados da CoNLL-2012 Shared Task. Para a língua inglesa, nosso sistema obteve um valor de 62.24 por cento no score oficial dessa competição. Este resultado está abaixo do desempenho no estado da arte para esta tarefa que é de 65.73 por cento. No entanto, nossa solução reduz significativamente o tempo de obtenção dos clusters dos documentos, pois, nosso sistema leva 0.35 segundos por documento no conjunto de testes, enquanto no estado da arte, leva 5 segundos para cada um.
Descrição: Arquivo:   
NA ÍNTEGRA PDF