Título: | RECONHECIMENTO FACIAL EM VÍDEO COM UMA AMOSTRA POR PESSOA UTILIZANDO STACKED SUPERVISED AUTO-ENCODER | ||||||||||||
Autor: |
PEDRO JUAN SOTO VEGA |
||||||||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador PATRICK NIGRI HAPP - Coorientador |
||||||||||||
Catalogação: | 23/NOV/2016 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28102&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28102&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28102 | ||||||||||||
Resumo: | |||||||||||||
Esta dissertação propõe e avalia estratégias baseadas nos Stacked Supervised Auto-encoders (SSAE) para representação de imagens faciais em aplicações de vídeo vigilância. O estudo foca na identificação de faces a partir de uma amostra por pessoa na galeria (single sample per person - SSPP). Variações em termos de pose, expressão facial, iluminação e oclusão são abordadas de duas formas. Primeiro, o SSAE extrai atributos das imagens de faces que são robustos contra tais variações. Segundo, exploram-se as múltiplas amostras que podem ser coletadas nas sequências de vídeo de uma pessoa (multiple samples per person probe - MSPPP). Os métodos propostos foram avaliados e comparados usando os bancos de vídeos Honda/UCSD e VIDTIMIT. Adicionalmente, foi estudada a influência de parâmetros relacionados com a arquitetura do SSAE utilizando o banco de imagens estáticas Extended Yale B. Os resultados demonstraram que as estratégias que exploram as MSPPP em combinação com o SSAE podem superar o desempenho de outros métodos SSPP, como os Padrões Binários Locais (LBP), para reconhecimento de faces em vídeos.
|
|||||||||||||
|