Título: | TÉCNICAS DE REORDENAÇÃO PARA SOLUÇÃO DE SISTEMAS ESPARSOS | ||||||||||||
Autor: |
IVAN FABIO MOTA DE MENEZES |
||||||||||||
Colaborador(es): |
MARCELO GATTASS - Orientador |
||||||||||||
Catalogação: | 26/JUL/2002 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2779&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2779&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.2779 | ||||||||||||
Resumo: | |||||||||||||
Este trabalho apresenta técnicas de reordenação para
minimização de banda, perfil e frente de malhas de
elementos finitos. Um conceito unificado relacionando as
malhas de elementos finitos, os grafos associados e as
matrizes correspondentes é proposto. As informações
geométricas, disponíveis nos programans de elemnetos
finitos, são utilizadas para aumentar a eficiência dos
algoritmos heurísticos. Com base nestas idéias, os
algoritmos são classificados em topológicos,
geométricos, híbridos e espectrais. Um Grafo de
Elementos Finitos - Finite Element Graph (FEG)- é
definido coo um grafo nodal(G), um garfo dual(G) ou um
grafo de comunicação(G.), associado a uma dada malha de
elementos finitos. Os algoritmos topológicos mais
utilizados na literatura técnica, tais como, Reverse-
CuthiiMcKee (RCM), Collins, Gibbs-Poole-Stockmeyer(GPS),
Gibbs-King (GK), Snay e Sloan, são inventigados
detalhadamente. Em particular, o algoritmo de Collins é
estendido para consideração de componentes não conexos
nos grafos associados e a numeração é invertida para uma
posterior redução do perfil das matrizer
correspondentes. Essa nova versão é denominada Modified
Reverse Collins (MRCollins). Um algoritmo puramente
geométrico, denominado Coordinate Based Bandwidth and
Profile Reduction (CBBPR), é apresentado. Um novo
algoritmo híbrido (HybWP) para redução de frente e
perfil é proposto. A matriz Laplaciana [L(G), L(G) ou L
(G.)], utilizada no estudo de propriedades espectrais de
grafos, é construída a partir das relações usuais de
adjacências entre vértices e arestas. Um algoritmo
automático, baseado em propriedades espectrais de FEGs,
é proposto para reordenação de nós e/ou elementos das
malhas associadas. Este algoritmo, denominado Spectral
FEG Resequencing (SFR), utiliza informações globais do
grafo; não depende da escolha de um vértice pseudo-
periférico; e não utiliza o conceito de estrutura de
níveis. Um novo algoritmo espectral para determinação de
vértices pseudo-periféricos em grafos também é proposto.
Os algoritmos apresentados neste trabalho são
implementados computacionalmente e testados utilizando-
se diversos exemplos numéricos. Finalmente, conclusões
são apresentadas e algumas sugestões para trabalhos
futuros são propostas.
|
|||||||||||||
|