Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GPFIS: UM SISTEMA FUZZY-GENÉTICO GENÉRICO BASEADO EM PROGRAMAÇÃO GENÉTICA
Autor: ADRIANO SOARES KOSHIYAMA
Colaborador(es): MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
RICARDO TANSCHEIT - Coorientador
Catalogação: 08/JUN/2016 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE Best DSc Theses and MSc Dissertations Contest in Artificial and Computational Intelligence - SBC
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26560&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26560&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26560
Resumo:
Sistemas Fuzzy-Genéticos compreendem uma área que une Sistemas de Inferência Fuzzy e Meta-Heurísticas prevalentes nos conceitos de seleção natural e recombinação genética. Esta é de grande interesse para a comunidade científica, pois propicia a descoberta de conhecimento em áreas onde a compreensão do fenômeno em estudo é exíguo, além de servir de apoio à decisão para gestores público-privados. O objetivo desta dissertação é desenvolver um novo Sistema Fuzzy-Genético Genérico, denominado Genetic Programming Fuzzy Inference System (GPFIS). O principal aspecto do modelo GPFIS são as componentes do seu processo de Inferência Fuzzy. Esta estrutura é composta em sua base pela Programação Genética Multigênica e pretende: (i ) possibilitar o uso de operadores de agregação, negação e modificadores linguísticos de forma simplificada; (ii ) empregar heurísticas de definição do consequente mais apropriado para uma parte antecedente; e (iii ) usar um procedimento de defuzzificação, que induzido pela forma de fuzzificação e sobre determinadas condições, pode proporcionar uma estimativa mais acurada. Todas estas são contribuições que podem ser estendidas a outros Sistemas Fuzzy-Genéticos. Para demonstrar o aspecto genérico, o desempenho e a importância de cada componente para o modelo proposto, são formuladas uma série de investigações empíricas. Cada investigação compreende um tipo de problema: Classificação, Previsão, Regressão e Controle. Para cada problema, a melhor configuração obtida durante as investigações é usada no modelo GPFIS e os resultados são comparados com os de outros Sistemas Fuzzy-Genéticos e modelos presentes na literatura. Por fim, para cada problema é apresentada uma aplicação detalhada do modelo GPFIS em um caso real.
Descrição: Arquivo:   
NA ÍNTEGRA PDF