Título: | COBERTURAS DE REGIÕES TRIDIMENSIONAIS POR DOMINÓS | ||||||||||||
Autor: |
PEDRO HENRIQUE MILET PINHEIRO PEREIRA |
||||||||||||
Colaborador(es): |
NICOLAU CORCAO SALDANHA - Orientador |
||||||||||||
Catalogação: | 22/JAN/2016 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25660&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25660&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.25660 | ||||||||||||
Resumo: | |||||||||||||
Nessa tese, consideramos coberturas de regiões tridimensionais por dominós, especialmente as da forma D x [0,N]. Em particular, nós investigamos as componentes conexas do espaço de coberturas desse tipo de região por flips, o movimento local que consiste em remover dois dominós paralelos adjacentes e colocá-los de volta na única outra posição possível. Para regiões da forma D x [0,2], nós definimos um invariante polinomial Pt(q) que caracteriza coberturas que estão quase na mesma componente conexa, num sentido discutido na tese. Também provamos que o espaço de coberturas desse tipo de região é conexo por flips e trits, um movimento local que consiste em remover três dominós adjacentes e ortogonais entre si e colocá-los de volta na única outra posição possível. No caso geral, o invariante é um inteiro, o twist, para o qual damos uma fórmula combinatória simples, bem como uma interpretação via teoria dos nós; também provamos que o twist tem propriedades aditivas para decomposições adequadas de uma região. Por fim, investigamos também o conjunto de valores que são twists de coberturas de uma caixa L x M x N.
|
|||||||||||||
|