Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ENVELOPE DE PLANOS MÉDIOS
Autor: ADY CAMBRAIA JUNIOR
Colaborador(es): MARCOS CRAIZER - Orientador
Catalogação: 18/NOV/2015 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25484&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=25484&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.25484
Resumo:
O Envelope de Retas Médias - ERM consiste da união de três conjuntos invariantes afins: o Affine Envelope Symmetry Set - AESS; o Mid-Parallel Tangents Locus - MPTL; e a Evoluta Afim - EA. O ERM de curvas planas convexas é um assunto que tem sido muito explorado. Porém, não existe na literatura nenhum estudo do ERM para superfícies. Por isso, o objetivo principal desta tese é generalizar o ERM de curvas convexas para superfícies convexas. Para tanto, dividimos a tese em duas partes. A primeira consiste de uma revisão sobre a geometria afim de curvas planas e do estudo do ERM com uma nova abordagem. Na segunda parte realizamos uma breve introdução da geometria afim de hipersuperfícies e a generalização do ERM. Na generalização do ERM, trabalhamos com superfícies, definimos os planos médios e estudamos o que denominamos Envelope de Planos Médios -EPM. Provamos que, o EPM assim como o ERM, é formado por três conjuntos invariantes afins: a Superfície de Centros de 3 mais 3-Cônicas - SC3C; o Mid-Parallel Tangents Surface -MPTS; e a Evoluta de Curvas Médias - ECM.
Descrição: Arquivo:   
NA ÍNTEGRA PDF