Título: | UMA INTRODUÇÃO À REDUÇÃO DE MODELOS ATRAVÉS DA EXPANSÃO DE KARHUNEN-LOÈVE | ||||||||||||||||||||
Autor: |
CLAUDIO WOLTER |
||||||||||||||||||||
Colaborador(es): |
RUBENS SAMPAIO FILHO - Orientador |
||||||||||||||||||||
Catalogação: | 10/ABR/2002 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2519&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2519&idi=2 |
||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.2519 | ||||||||||||||||||||
Resumo: | |||||||||||||||||||||
Esta dissertação tem como principal objetivo estudar
aplicações da expansão ou decomposição de Karhunen-Loève em
dinâmica de estruturas. Esta técnica consiste, basicamente,
na obtenção de uma decomposição linear da resposta dinâmica
de um sistema qualquer, representado por um campo vetorial
estocástico, tendo a importante propriedade de ser ótima,
no sentido que dado um certo número de modos, nenhuma outra
decomposição linear pode melhor representar esta resposta.
Esta capacidade de compressão de informação faz desta
decomposição uma poderosa ferramenta para a construção de
modelos reduzidos para sistemas mecânicos em geral. Em
particular, este trabalho aborda problemas em dinâmica
estrutural, onde sua aplicação ainda é bem recente.
Inicialmente, são apresentadas as principais hipóteses
necessárias à aplicação da expansão de Karhunen-Loève, bem
como duas técnicas existentes para sua implementação, com
domínios distintos de utilização.É dada especial atenção à
relação entre os modos empíricos fornecidos pela expansão e
os modos de vibração intrínsecos a sistemas vibratórios
lineares, tanto discretos quanto contínuos, exemplificados
por uma treliça bidimensional e uma placa retangular. Na
mesma linha, são discutidas as vantagens e desvantagens de
se usar esta expansão como ferramenta alternativa à análise
modal clássica. Como aplicação a sistemas não-lineares, é
apresentado o estudo de um sistema de vibroimpacto definido
por uma viga em balanço cujo deslocamento transversal é
limitado por dois batentes elásticos. Os modos empíricos
obtidos através da expansão de Karhunen-Loève são, então,
usados na formulação de um modelo de ordem reduzida,
através do método de Galerkin, e o desempenho deste novo
modelo investigado.
|
|||||||||||||||||||||
|