Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ALGUMAS RELAÇÕES ENTRE CÁLCULO DE SEQUENTES E DEDUÇÃO NATURAL
Autor: CECILIA REIS ENGLANDER LUSTOSA
Colaborador(es): EDWARD HERMANN HAEUSLER - Orientador
GILLES DOWEK - Coorientador
Catalogação: 19/MAR/2015 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24302&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24302&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.24302
Resumo:
Segerberg apresentou uma prova geral da completude para lógicas proposicionais. Para tal, um sistema de dedução foi definido de forma que suas regras sejam regras para um operador booleano arbitrário para uma dada lógica proposicional. Cada regra desse sistema corresponde a uma linha na tabela de verdade desse operador. Na primeira parte desse trabalho, mostramos uma extensão da ideia de Segerberg para lógicas proposicionais finito-valoradas e para lógicas não-determinísticas. Mantemos a ideia de definir um sistema de dedução cujas regras correspondam a linhas de tabelas verdade, mas ao invés de termos um tipo de regra para cada valor de verdade da lógica correspondente, usamos uma representação bivalente que usa a técnica de fórmulas separadoras definidas por Carlos Caleiro e João Marcos. O sistema definido possui tantas regras que pode ser difícil trabalhar com elas. Acreditamos que um sistema de cálculo de sequentes definido de forma análoga poderia ser mais intuitivo. Motivados por essa observação, a segunda parte dessa tese é dedicada à definição de uma tradução entre cálculo de sequentes e dedução natural, onde procuramos definir uma bijeção melhor do que as já existentes.
Descrição: Arquivo:   
CAPA, AGRADECIMENTO, ABSTRACT, RESUMO E SUMÁRIO PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF