Título: | TÉCNICAS DE MODELOS DE MATRIZES E GRAVIDADE QUÂNTICA CAUSAL EM DUAS DIMENSÕES | ||||||||||||
Autor: |
SAULO MATUSALEM DA SILVA MENDES |
||||||||||||
Colaborador(es): |
STEFAN ZOHREN - Orientador |
||||||||||||
Catalogação: | 27/FEV/2015 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24155&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24155&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.24155 | ||||||||||||
Resumo: | |||||||||||||
Nesta dissertação nós discutimos as técnicas de modelos de matrizes
para gravidade quântica em duas dimensões, as triangulações dinâmicas (DT)
e sua versão causal, chamada de triangulações dinâmicas causais (CDT). Em
virtude do teorema de Gauss-Bonnet a ação de Einstein-Hilbert se torna um
invariante topológico em duas dimensões, por conseguinte, a avaliação da
integral de caminho se transforma em um simples problema combinatório de
contagem dos diagramas desenhados em uma superfície de Riemann, o
que implica numa expansão topológica da função de partição. Usando
métodos de integrais da teoria quântica de campos, podemos entender a
correspondência entre modelos de matrizes e a formulação em grade da
gravidade quântica, onde as N × N matrizes Hermitianas geram gráficos
planares. Uma vez que a integral matricial se reduz a uma integração
dos seus autovalores, solucionamos o modelo matricial utilizando duas
técnicas: polinômios ortogonais e a análise do ponto de sela. Usando os
polinômios ortogonais calculamos a energia livre no limite planar para diferentes
potenciais. Por fim, partindo dos modelos matriciais estudamos DT e CDT
numa analogia com o gás de Coulomb.
|
|||||||||||||
|