Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: ANÁLISE DE SENSIBILIDADE E OTIMIZAÇÃO DE FORMA DE ESTRUTURAS GEOMETRICAMENTE NÃO-LINEARES
Autor: EVANDRO PARENTE JUNIOR
Colaborador(es): LUIZ ELOY VAZ - Orientador
RAUL ROSAS E SILVA - Coorientador
Catalogação: 05/OUT/2001 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=2
[es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=4
DOI: https://doi.org/10.17771/PUCRio.acad.1998
Resumo:
Este trabalho propõe uma metodologia para a otimização de forma de estruturas geometricamente não-lineares. O objetivo desta metodologia é evitar os problemas de instabilidade apresentados por estruturas otimizadas de acordo com a formulação clássica. Ela foi implementada para problemas bidimensionais e os resultados obtidos na otimização de diferentes estruturas demonstraram o seu sucesso. Utilizando-se conceitos de modelagem geométrica, a forma da estrutura é defini-da através das curvas de seu contorno. Assim, a representação paramétrica de curvas e a definição destas em função de um conjunto de pontos de interpolação (pontos-chave) são discutidas detalhadamente. A ênfase é dada à interpolação através de B-splines,devido a sua grande flexibilidade. O problema de otimização é definido com base no modelo geométrico e as variáveis de projeto são as coordenadas dos pontos-chave. A simetria da estrutura é garantida através da ligação de variáveis. A estrutura é analisada através de elementos isoparametricos planos. Assim, antes de realizar a análise, é necessário discretizar a estrutura em um conjunto de elementos finitos. Para realizar esta tarefa foram implementados diferentes algoritmos de geração de malhas, tanto estruturadas quanto não-estruturadas. O método de Newton-Raphson é utilizado pa- ra determinar a configuração de equilíbrio e diferentes métodos podem ser aplicados para determinar os pontos críticos. Devido aos problemas de convergência apresentados pelos métodos diretos para a determinação dos pontos crticos, um método semi-direto foi desenvolvido neste trabalho. Os resultados obtidos na análise de diferentes exemplos mostraram a adequação dos elementos finitos e dos métodos numéricos implementados. Os algoritmos de programação matemática utilizados neste trabalho precisam dos gradientes da função objetivo e das restrições, que são calculadas com base nos gradientes das respostas da estrutura. Partindo-se de equações gerais válidas para quaisquer elementos,foram desenvolvidas expressões analíticas que permitem o cálculo exato das sensibilidades de elementos finitos isoparamétricos formulados através do procedimento Lagrangiano Total. O desenvolvimento e a implementação de expressões semelhantes para elementos mais complexos é uma tarefa bastante árdua. Por outro lado, o método das diferenças fi- nitas é simples e genérico, mas muito caro computacionalmente. O método semi-analítico mantémm as vantagens da utilização de diferenças finitas e possui um custo computacional baixo, porém pode apresentar sérios problemas de preciso. Devido a estes motivos, foi desenvolvido neste trabalho um procedimento para melhorar a qualidade das sensibilidades semi-analíticas de estruturas geometricamente não-lineares. O procedimento é baseado na diferenciação exata dos movimentos de corpo rígido do elemento utilizado. Os resultados numéricos obtidos demonstraram a sua eficácia.
Descrição: Arquivo:   
NA ÍNTEGRA PDF