Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: AJUSTE DE HISTÓRICO EM MODELOS DE SIMULAÇÃO DE RESERVATÓRIOS POR ALGORITMOS GENÉTICOS E GEOESTATÍSTICA DE MÚLTIPLOS PONTOS
Autor: EUGENIO DA SILVA
Colaborador(es): MARCO AURELIO CAVALCANTI PACHECO - Orientador
Catalogação: 13/JUN/2012 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19629&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19629&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19629
Resumo:
Na área de Exploração e Produção (EeP) de petróleo, o estudo minucioso das características de um reservatório é imperativo para a criação de modelos de simulação que representem adequadamente as suas propriedades petrofísicas. A disponibilidade de um modelo adequado é fundamental para a obtenção de previsões acertadas acerca da produção do reservatório, e isso impacta diretamente a tomada de decisões gerenciais. Devido às incertezas inerentes ao processo de caracterização, ao longo da vida produtiva do reservatório, periodicamente o seu modelo de simulação correspondente precisa ser ajustado. Todavia, a tarefa de ajustar as propriedades do modelo se traduz em um problema de otimização complexo, onde o número de variáveis envolvidas é tão maior quanto maior for a quantidade de blocos que compõem a malha do modelo de simulação. Na maioria das vezes esses ajustes envolvem processos empíricos que demandam elevada carga de trabalho do especialista. Esta pesquisa investiga e avalia uma nova técnica computacional híbrida, que combina Algoritmos Genéticos e Geoestatística Multiponto, para a otimização de propriedades em modelos de reservatórios. Os resultados obtidos demonstram a robustez e a confiabilidade da solução proposta, uma vez que, diferentemente das abordagens tradicionalmente adotadas, é capaz de gerar modelos que não apenas proporcionam um ajuste adequado das curvas de produção, mas também que respeitam as características geológicas do reservatório.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTA DE FIGURAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF