Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: INCERTEZA DE MEDIÇÃO EM REDES NEURAIS ARTIFICIAIS APLICADAS À MANUTENÇÃO PREDITIVA DE TRANSFORMADORES
Autor: CHRISTIANE SAMPAIO DE ALMEIDA GUSMAN
Colaborador(es): CARLOS ROBERTO HALL BARBOSA - Orientador
Catalogação: 30/MAR/2012 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19358&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19358&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19358
Resumo:
Diversas pesquisas sobre monitoramento e diagnóstico de equipamentos do sistema elétrico foram iniciadas com o objetivo de elevar a garantia e confiabilidade no sistema. Autores, não somente no Brasil, desenvolveram pesquisas sobre o tema, dentre eles (Bengtson, 1996; Kovacevic & Dominelli, 2003; Freitas, 2000). O objetivo é garantir a confiabilidade dos equipamentos instalados e incrementar o desempenho aumentando a vida útil dos mesmos. Nesse contexto (Freitas, 2000; Cavaleiro, 2003; dentre outros) discorrem sobre o tema. As redes neurais artificiais são utilizadas como uma das possíveis ferramentas disponíveis para análise, diagnóstico e monitoramento de equipamentos. A inovação deste trabalho está em apresentar uma nova metodologia desenvolvida para analisar a propagação das incertezas de medição das variáveis de entrada em redes neurais artificiais aplicadas à Manutenção Preditiva de Transformadores. Com base nos conceitos da metrologia foram analisados não somente os dados de entrada como também a incerteza de medição associadas aos mesmos. O método desenvolvido permite que se estime a incerteza de medição das variáveis de saída, contribuindo para a avaliação da confiabilidade de modelagens baseadas em redes neurais. Também foi realizado um estudo de caso, no qual se avaliou a propagação das incertezas de medição em sete redes neurais destinadas a estimar a concentração dos gases (saídas das redes) dissolvidos no óleo de transformadores de potência, com base nas características físico-químicas do óleo (variáveis de entrada). A metodologia utilizada baseou-se na introdução de perturbações na entrada das redes analisadas e na consequente análise de como estas perturbações afetam a saída das redes, permitindo-se assim calcular os coeficientes de sensibilidade de cada entrada. Em seguida, combinando-se as incertezas de medição das variáveis de entrada (disponíveis nos certificados de calibração dos instrumentos utilizados nas respectivas medições), por meio dos coeficientes de sensibilidade, é possível estimar a incerteza de medição das variáveis de saída.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E ANEXO PDF