Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MODELOS DE FATORAÇÃO MATRICIAL PARA RECOMENDAÇÃO DE VÍDEOS
Autor: BRUNO DE FIGUEIREDO MELO E SOUZA
Colaborador(es): RUY LUIZ MILIDIU - Orientador
Catalogação: 14/MAR/2012 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19273&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19273&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19273
Resumo:
A recomendação de itens a partir do feedback implícito dos usuários consiste em identificar padrões no interesse dos usuários por estes itens a partir de ações dos usuários, tais como cliques, interações ou o consumo de conteúdos específicos. Isso, de forma a prover sugestões personalizadas que se adéquem ao gosto destes usuários. Nesta dissertação, avaliamos a performance de alguns modelos de fatoração matricial otimizados para a tarefa de recomendação a partir de dados implícitos no consumo das ofertas de vídeos da Globo.com. Propusemos tratar estes dados de consumo como indicativos de intenção de um usuário em assistir um vídeo. Além disso, avaliamos como os vieses únicos dos usuários e vídeos, e sua variação temporal impactam o resultado das recomendações. Também sugerimos a utilização de um modelo de fatoração incremental otimizado para este problema, que escala linearmente com o tamanho da entrada, isto é, com os dados de visualizações e quantidade de variáveis latentes. Na tarefa de prever a intenção dos usuários em consumir um conteúdo novo, nosso melhor modelo de fatoração apresenta um RMSE de 0,0524 usando o viés de usuários e vídeos, assim como sua variação temporal.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF