Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: REPRESENTAÇÃO NUMÉRICA DE CASCAS FINAS AXISSIMÉTRICAS SOB CARREGAMENTO GERAL COM UM MODELO UNIDIMENSIONAL
Autor: PETER TANSCHEIT
Colaborador(es): CARLOS ALBERTO DE ALMEIDA - Orientador
Catalogação: 08/FEV/2012 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19142&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19142&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.19142
Resumo:
Neste trabalho apresenta-se a formulação de um modelo unidimensional de elementos finitos para análise estática , isotérmica , linear elástica de cascas finas axissimétricas isotrópicas submetidas a carregamentos gerais. A geometria e o campo de deslocamentos são definidos a partir de número variável de pontos nodais , máximo de quatro (4) , distribuídos ao longo da linha média da casca na direção longitudinal. Utiliza-se a formulação isoparamétrica e a cinemática de deformações é definida a partir de três graus-de-liberdade a translação definidos na linha média do plano da simetria da casca. O acoplamento da rotação e os graus-de-liberdade a translação definidos na linha média do plano da simetria da casca. O acoplamento da rotação e os graus-de-liberdade a translação é garantido a partir da hipótese de Love para cascas finas , em que , segmentos inicialmente retos e perpendiculares á superfície mediana e inextensíveis durante o processo de deformação. Para se garantir a continuidade entre elementos , ou entre um elemento e um flange , devido aos efeitos de flexão , utiliza-se o Método de Penalidades. A formulação do presente modelo inclui as deformações lineares nas direções longitudinal e circunferencial devido aos efeitos de flexão e membrana da casca, e a deformação angular , todas obtidas em plano paralelo a superfície mediana de referência da casca , nas direções de curvatura principais. Um carregamento geral Periódico, de período máximo 2n , aplicado ao modelo unidimensional em questão , é representado por uma Função carregamento que pode ser expandida em série de Fourier no domínio circunferencial da casca. Para acomodar as deformações associadas a este carregamento, a discretização dos graus-de-liberdade a translação deve conter um expansão em série na direção circunferencial equivalente à do carregamento , mantendo-se a discretização polinomial na direção longitudinal. Esta formulação , permite que carregamentos generalizados possam ser aplicados ao modelo. Soluções numéricas de algumas estruturas utilizando o modelo proposto são comparadas com outros resultados analíticos e/ou numéricos disponíveis na literatura , demonstrando a aplicabilidade do elemento na representação de cascas finas axissimétricas, em geral.
Descrição: Arquivo:   
NA ÍNTEGRA PDF