Título: | UMA ABORDAGEM BASEADA EM CONHECIMENTO PARA A INTERPRETAÇÃO AUTOMÁTICA DE DADOS DE SENSORIAMENTO REMOTO MULTI-DATA | |||||||
Autor: |
GILSON ALEXANDRE OSTWALD PEDRO DA COSTA |
|||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador |
|||||||
Catalogação: | 15/SET/2009 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14130&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14130&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.14130 | |||||||
Resumo: | ||||||||
O objetivo genérico desta Tese foi o desenvolvimento de técnicas
computacionais baseadas em conhecimento para apoiar a interpretação automática
de dados de sensoriamento remoto multi-temporais, com ênfase na investigação
da aquisição e representação explícita de conhecimento temporal, bem como na
sua integração com outros tipos de conhecimento dentro do processo de
interpretação. Dois objetivos específicos, inter-relacionados, foram perseguidos:
(i) o desenvolvimento de um novo método de classificação baseado no conceito
de cadeias nebulosas de Markov (CNM), que provê meios para a estimação de
seus parâmetros temporais e para a utilização de conhecimento temporal no
processo de classificação; e (ii) a modelagem e implementação de um ambiente
baseado em conhecimento, de código livre, para a interpretação de dados de
sensoriamento remoto. Para validar o novo método de classificação multitemporal,
foram realizados experimentos voltados à interpretação de uma
seqüência de três imagens LANDSAT de uma área na Região Centro-Oeste do
Brasil, utilizando um método estocástico e outro analítico para a estimação das
matrizes de transição de classes que compõem o modelo CNM. Enquanto os
classificadores mono-temporais obtiveram uma acurácia média por classe de 55%,
o esquema multi-temporal alcançou acurácias entre 63% e 94%. Resultados
semelhantes em termos de acurácia global foram verificados. Além disso, quando
comparado a abordagens multi-temporais correlatas, o método proposto obteve
melhores resultados. De forma a validar o ambiente baseado em conhecimento
aqui proposto, o método CNM foi implementado através de suas funcionalidades.
Um conjunto de experimentos nos quais diferentes variações do método CNM,
estruturadas no novo ambiente, foi executado satisfatoriamente.
|
||||||||