Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FILTRAGEM COLABORATIVA APLICADA A PUBLICIDADE DIRECIONADA
Autor: ROBERTO PEREIRA CAVALCANTE
Colaborador(es): RUY LUIZ MILIDIU - Orientador
Catalogação: 27/OUT/2008 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12400&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12400&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.12400
Resumo:
O surgimento da World Wide Web representou uma nova oportunidade de publicidade, disponível para qualquer empresa: A possibilidade de exposição global para uma grande audiência a um custo extremamente pequeno. Como conseqüência disso, surgiu toda uma nova indústria oferecendo serviços relacionados à publicidade de busca, na qual uma empresa anunciante paga por uma posição de destaque em listas de anúncios. A fim de manter a credibilidade e a participação de mercado do serviço que os veicula - por exemplo, uma máquina de busca - os anúncios devem ser exibidos apenas para os usuários que se interessem por eles, no que se chama de Publicidade Direcionada. Em virtude disso, surge a necessidade de se utilizar um sistema de recomendação que seja capaz de escolher que anúncios exibir para quais usuários. Nos sistemas de recomendação baseados em filtragem colaborativa, as preferências de outros usuários são utilizadas como atributos para um sistema de aprendizado, pois estas podem ser bastante detalhadas, gerando recomendações não só para os itens mais populares como também para nichos de itens. Neste trabalho, é desenvolvido um sistema de recomendação de anúncios que aplica Filtragem Colaborativa baseada em fatoração de matrizes ao problema de predição do Click- Through Rate, uma métrica em Publicidade Direcionada que expressa a relevância de um anúncio para os usuários que buscam por uma determinada palavra- chave. A fim de validar o método proposto de predição do Click-Through Rate, realizamos vários experimentos em um conjunto de dados sintéticos. Adicionalmente, o trabalho contribui para o projeto do LearnAds, um framework de recomendação de anúncios baseado em Aprendizado de Máquina.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E SUMÁRIO PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF