Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CLASSIFICAÇÃO E SEGMENTAÇÃO DE ÁUDIO A PARTIR DE FATORES DE ESCALA MPEG
Autor: FERNANDO RIMOLA DA CRUZ MANO
Colaborador(es): BRUNO FEIJO - Orientador
Catalogação: 06/MAI/2008 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11606&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11606&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.11606
Resumo:
As tarefas de segmentação e classificação automáticas de áudio vêm se tornando cada vez mais importantes com o crescimento da produção e armazenamento de mídia digital. Este trabalho se baseia em características do padrão MPEG, que é considerado o padrão para acervos digitais, para gerir algoritmos de grande eficiência para realizar essas arefas. Ao passo que há muitos estudos trabalhando a partir do vídeo, o áudio ainda é pouco utilizado de forma eficiente para auxiliar nessas tarefas. Os algoritmos sugeridos partem da leitura apenas dos fatores de escala presentes no Layer 2 do áudio MPEG para ambas as tarefas. Com isso, é necessária a leitura da menor quantidade possível de informações, o que diminui significativamente o volume de dados manipulado durante a análise e torna seu desempenho excelente em termos de tempo de processamento. O algoritmo proposto para a classificação divide o áudio em quatro possíveis tipos: silêncio, fala, música e aplausos. Já o algoritmo de segmentação encontra as mudanças ignificativas de áudio, que são indícios de segmentos e mudanças de cena. Foram realizados testes com diferentes tipos de vídeos, e ambos os algoritmos mostraram bons resultados.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF