Título: | ESTRATÉGIAS PARA OTIMIZAR PROCESSOS DE ANOTAÇÃO E GERAÇÃO DE DATASETS DE SEGMENTAÇÃO SEMÂNTICA EM IMAGENS DE MAMOGRAFIA | ||||||||||||
Autor: |
BRUNO YUSUKE KITABAYASHI |
||||||||||||
Colaborador(es): |
ALBERTO BARBOSA RAPOSO - Orientador |
||||||||||||
Catalogação: | 17/NOV/2022 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61254&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61254&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61254 | ||||||||||||
Resumo: | |||||||||||||
Com o avanço recente do uso de aprendizagem profunda supervisionada
(supervised deep learning) em aplicações no ramo da visão computacional, a
indústria e a comunidade acadêmica vêm evidenciando que uma das principais
dificuldades para o sucesso destas aplicações é a falta de datasets com a
suficiente quantidade de dados anotados. Nesse sentido aponta-se a necessidade
de alavancar grandes quantidades de dados rotulados para que estes modelos
inteligentes possam solucionar problemas pertinentes ao seu contexto para
atingir os resultados desejados. O uso de técnicas para gerar dados anotados
de maneira mais eficiente está sendo cada vez mais explorado, juntamente com
técnicas para o apoio à geração dos datasets que servem de insumos para o
treinamento dos modelos de inteligência artificial. Este trabalho tem como
propósito propor estratégias para otimizar processos de anotação e geração
de datasets de segmentação semântica. Dentre as abordagens utilizadas neste
trabalho destacamos o Interactive Segmentation e Active Learning. A primeira,
tenta melhorar o processo de anotação de dados, tornando-o mais eficiente e
eficaz do ponto de vista do anotador ou especialista responsável pela rotulagem
dos dados com uso de um modelo de segmentação semântica que tenta imitar
as anotações feitas pelo anotador. A segunda, consiste em uma abordagem que
permite consolidar um modelo deep learning utilizando um critério inteligente,
visando a seleção de dados não anotados mais informativos para o treinamento
do modelo a partir de uma função de aquisição que se baseia na estimação de
incerteza da rede para realizar a filtragem desses dados. Para aplicar e validar
os resultados de ambas as técnicas, o trabalho os incorpora em um caso de
uso relacionado em imagens de mamografia para segmentação de estruturas
anatômicas.
|
|||||||||||||
|