Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APLICANDO APRENDIZADO DE MÁQUINA À SUPERVISÃO DO MERCADO DE CAPITAIS: CLASSIFICAÇÃO E EXTRAÇÃO DE INFORMAÇÕES DE DOCUMENTOS FINANCEIROS
Autor: FREDERICO SHU
Colaborador(es): ALVARO DE LIMA VEIGA FILHO - Orientador
Catalogação: 06/JAN/2022 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56962&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56962&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56962
Resumo:
A análise de documentos financeiros não estruturados é uma atividade essencial para a supervisão do mercado de capitais realizada pela Comissão de Valores Mobiliários (CVM). Formas de automatização que reduzam o esforço humano despendido no processo de triagem de documentos são vitais para a CVM lidar com a escassez de recursos humanos e a expansão do mercado de valores mobiliários. Nesse contexto, a dissertação compara sistematicamente diversos algoritmos de aprendizado de máquina e técnicas de processamento de texto, a partir de sua aplicação em duas tarefas de processamento de linguagem natural – classificação de documentos e extração de informações – desempenhadas em ambiente real de supervisão de mercados. Na tarefa de classificação, os algoritmos clássicos proporcionaram melhor desempenho que as redes neurais profundas, o qual foi potencializado pela aplicação de técnicas de subamostragem e comitês de máquinas (ensembles). A precisão atual, estimada entre 20 por cento, e 40 por cento, pode ser aumentada para mais de 90 por cento, com a aplicação dos algoritmos testados. A arquitetura BERT foi capaz de extrair informações sobre aumento de capital e incorporação societária de documentos financeiros. Os resultados satisfatórios obtidos em ambas as tarefas motivam a implementação futura em regime de produção dos modelos estudados, sob a forma de um sistema de apoio à decisão. Outra contribuição da dissertação é o CVMCorpus, um corpus constituído para o escopo deste trabalho com documentos financeiros entregues por companhias abertas brasileiras à CVM entre 2009 e 2019, que abre possibilidades de pesquisa futura linguística e de finanças.
Descrição: Arquivo:   
NA ÍNTEGRA PDF