Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APOIANDO INSTRUTORES NA ANÁLISE DE LOGS DOS ESTUDANTES DE AMBIENTES VIRTUAIS DE APRENDIZAGEM
Autor: ANDRE LUIZ DE BRANDAO DAMASCENO
Colaborador(es): SIMONE DINIZ JUNQUEIRA BARBOSA - Orientador
Catalogação: 16/NOV/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50335&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50335&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.50335
Resumo:
Cursos online têm ampliado as possibilidades de pesquisa sobre comportamento e performance de estudantes. Esta tese investiga como apoiar instrutores na análise de logs de estudantes em Ambientes Virtuais de Aprendizagem. Primeiro, conduzimos entrevistas com instrutores e realizamos um mapeamento sistemático do estado da arte sobre Education Data Mining e Learning Analytics. Em seguida, analisamos logs de cursos online oferecidos no Brasil e comparamos nossas descobertas com resultados apresentados na literatura. Além disso, capturamos as preferências dos instrutores em relação a visualização de comportamento e performance de estudantes. Contudo, notamos uma lacuna de trabalhos mostrando modelos para o desenvolvimento de ferramentas de Learning Analytics. Com base nesses estudos, esta tese apresenta um modelo conectando teorias e modelos de visualização, assim como requisitos dos instrutores, suas preferências de visualização, diretrizes da literatura e métodos para análise de logs dos estudantes. Instanciamos e avaliamos esse modelo em uma ferramenta para montar dashboards, capturamos evidências de aceitação da nossa proposta e obtivemos feedbacks dos instrutores sobre a ferramenta tais como suas preferências de análise e visualizações. Por fim, apresentamos algumas considerações e discutimos lacunas existentes no trabalho que podem fundamentar e guiar futuras pesquisas, tais como desenvolvimento de novas instâncias e implantações do nosso modelo em instituições de ensino brasileiras e avaliação de eventuais mudanças na performance dos estudantes quando instrutores visualizam informações sobre o comportamento e performance deles, e agem de acordo. É importante ressaltar que a maioria dos estudos apresentados nessa tese foram conduzidos antes da pandemia de COVID-19. Somente o último estudo foi executado no início da pandemia no Brasil.
Descrição: Arquivo:   
NA ÍNTEGRA PDF