Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CALIBRAÇÃO DE CÂMERA USANDO PROJEÇÃO FRONTAL-PARALELA E COLINEARIDADE DOS PONTOS DE CONTROLE
Autor: SASHA NICOLAS DA ROCHA PINHEIRO
Colaborador(es): ALBERTO BARBOSA RAPOSO - Orientador
Catalogação: 17/NOV/2016 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28011&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28011&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.28011
Resumo:
Imprescindível para quaisquer aplicações de visão computacional ou realidade aumentada, a calibração de câmera é o processo no qual se obtém os parâmetros intrínsecos e extrínsecos da câmera, tais como distância focal, ponto principal e valores que mensuram a distorção ótica da lente. Atualmente o método mais utilizado para calibrar uma câmera envolve o uso de imagens de um padrão planar em diferentes perspectivas, a partir das quais se extrai pontos de controle para montar um sistema de equações lineares cuja solução representa os parâmetros da câmera, que são otimizados com base no erro de reprojeção 2D. Neste trabalho, foi escolhido o padrão de calibração aneliforme por oferecer maior precisão na detecção dos pontos de controle. Ao aplicarmos técnicas como transformação frontal-paralela, refinamento iterativo dos pontos de controle e segmentação adaptativa de elipses, nossa abordagem apresentou melhoria no resultado do processo de calibração. Além disso, propomos estender o modelo de otimização ao redefinir a função objetivo, considerando não somente o erro de reprojeção 2D, mas também o erro de colinearidade 2D.
Descrição: Arquivo:   
NA ÍNTEGRA PDF