Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PARALELIZAÇÃO HETEROGÊNEA DA PROGRAMAÇÃO GENÉTICA LINEAR COM INSPIRAÇÃO QUÂNTICA
Autor: CRISTIAN ENRIQUE MUNOZ VILLALOBOS
Colaborador(es): MARCO AURELIO CAVALCANTI PACHECO - Orientador
DOUGLAS MOTA DIAS - Coorientador
Catalogação: 27/OUT/2016 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27791&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27791&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.27791
Resumo:
Um dos principais desafios da ciência da computação é conseguir que um computador execute uma tarefa que precisa ser feita, sem dizer-lhe como fazê-la. A Programação Genética (PG) aborda este desafio a partir de uma declaração de alto nível sobre o que é necessário ser feito e cria um programa de computador para resolver o problema automaticamente. Nesta dissertação, é desenvolvida uma extensão do modelo de Programação Genética Linear com Inspiração Quântica (PGLIQ) com melhorias na eficiência e eficácia na busca de soluções. Para tal, primeiro o algoritmo é estruturado em um sistema de paralelização heterogênea visando à aceleração por Unidades de Processamento Gráfico e a execução em múltiplos processadores CPU, maximizando a velocidade dos processos, além de utilizar técnicas otimizadas para reduzir os tempos de transferências de dados. Segundo, utilizam-se as técnicas de Visualização Gráfica que interpretam a estrutura e os processos que o algoritmo evolui para entender o efeito da paralelização do modelo e o comportamento da PGLIQ. Na implementação da paralelização heterogênea, são utilizados os recursos de computação paralela como Message Passing Interface (MPI) e Open Multi-Processing (OpenMP), que são de vital importância quando se trabalha com multi-processos. Além de representar graficamente os parametros da PGLIQ, visualizando-se o comportamento ao longo das gerações, uma visualização 3D para casos de robôtica evolutiva é apresentada, na qual as ferramentas de simulação dinâmica como Bullet SDK e o motor gráfico OGRE para a renderização são utilizadas.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF