Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: UM METACLASSIFICADOR PARA ENCONTRAR AS K-CLASSES MAIS RELEVANTES
Autor: DANIEL DA ROSA MARQUES
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 19/OUT/2016 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27696&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27696&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.27696
Resumo:
Considere uma rede com k nodos que pode apresentar falhas ao longo de sua operação. Além disso, assuma que é inviável verificar todos os nodos sempre que uma falha ocorre. Motivados por este cenário, propomos um método que usa aprendizado de máquina supervisionado para gerar rankings dos nodos mais prováveis por serem responsáveis pela falha. O método proposto é um metaclassificador que pode utilizar qualquer tipo de classificador internamente, onde o modelo gerado pelo metaclassificador é uma composição daqueles gerados pelos classificadores internos. Cada modelo interno é treinado com um subconjunto dos dados. Estes subconjuntos são criados sucessivamente a partir dos dados originais eliminando-se algumas instâncias. As instâncias eliminadas são aquelas cujas classes já foram colocadas no ranking. Métricas derivadas da Acurácia, Precision e Recall foram propostas e usadas para avaliar este método. Utilizando uma base de domínio público, verificamos que os tempos de treinamento e classificação do metaclassificador são maiores que os de um classificador simples. Entretanto ele atinge resultados melhores em alguns casos, como ocorre com as árvores de decisão, que superam a acurácia do benchmark por uma margem maior que 5 por cento.
Descrição: Arquivo:   
NA ÍNTEGRA PDF