Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MODELOS GAS APLICADOS A SERIES TEMPORAIS DE VAZAO E VENTO
Autor: GILSON GONCALVES DE MATOS
Colaborador(es): CRISTIANO AUGUSTO COELHO FERNANDES - Orientador
Catalogação: 04/OUT/2013 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22121&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=22121&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.22121
Resumo:
Os modelos GAS (generalized autoregressive score) são modelos de séries temporais com parâmetros variantes no tempo, os quais possuem sua evolução ditada pelo vetor score ponderado da função de verossimilhança. A avaliação da verossimilhança nestes modelos é bastante simples, bem como incorporação de efeitos como assimetria, memória longa e outras dinâmicas. Por serem baseados no score da verossimilhança, exporta-se a estrutura completa da distribuição preditiva para o mecanismo de atualização dos parâmetros, e não apenas a média ou momentos de ordem superior. Estas características, somadas á capacidade de lidar com processos multivariados e não estacionários, tornam a classe em estudo uma nova alternativa para a construção de modelos com parâmetros variantes, particularmente para séries temporais não gaussianas. Nesta dissertação, foram desenvolvidos modelos GAS univariados para a análise das séries mensais de vazão do Rio Paraibuna (MG) e de fator de capacidade de uma usina é olica não divulgada do Nordeste, utilizando as distribuições gama e beta, respectivamente. Além disso, foi derivado um novo modelo GAS bivariado com marginais gama e beta para a modelagem conjunta dos processos de vazão e vento, de modo a explorar a complementaridade sazonal entre as séries.
Descrição: Arquivo:   
NA ÍNTEGRA PDF