Título: | SHORT TERM WIND SPEED SCENARIO GENERATION FOR BRAZIL WITH IMPROVED GENERATIVE ADVERSARIAL NETWORKS | ||||||||||||
Autor: |
FELIPE WHITAKER DE ASSUMPCAO MATTOS TAVARES |
||||||||||||
Colaborador(es): |
FERNANDO LUIZ CYRINO OLIVEIRA - Orientador MARLEY MARIA BERNARDES REBUZZI VELLASCO - Coorientador |
||||||||||||
Catalogação: | 25/NOV/2024 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68658&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68658&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.68658 | ||||||||||||
Resumo: | |||||||||||||
The variability of renewable energy sources, such as wind power, presents
a significant challenge for grid operators in maintaining operational stability.
This is specially true to the medium-term (from hours to days ahead), which is
both influenced by recent past data and broader trends and heavily influences
decision making. This research proposes a Convolutional Generator Network
conditioned on the previous step of u- (latitudinal) and v- (longitudinal) wind
speed components to generate wind speed scenarios using the Conditional
Generative Adversarial Networks training algorithm. The model is compared
to the state of the art in weather forecasting, Numerical Weather Prediction
Systems. The proposed generator model outperforms the benchmark for a forth
of the months in the test dataset when predicting over two weeks (28 12-hourly
steps) starting from a single data point with much lower computational cost,
less input data and similar long-term stability. Additionally, its forecasts are
statistically equal to the state-of-the-art in 71.97 percent of series.
|
|||||||||||||
|