Título: | DEVELOPMENT OF A DECISION SUPPORT METHODOLOGY FOR INTELLIGENT MAINTENANCE COMBINING MULTICRITERIA AND MACHINE LEARNING APPROACHES: CASE STUDY IN A MANUFACTURING COMPANY | ||||||||||||
Autor: |
JAQUELINE ALVES DO NASCIMENTO |
||||||||||||
Colaborador(es): |
RODRIGO GOYANNES GUSMAO CAIADO - Orientador LUIZ FELIPE RORIS RODRIGUEZ SCAVARDA DO CARMO - Coorientador |
||||||||||||
Catalogação: | 13/MAI/2024 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66631&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66631&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.66631 | ||||||||||||
Resumo: | |||||||||||||
Industry 4.0 (I4.0) and digital transformation are revolutionizing maintenance in
industries, pushing it towards a more intelligent and proactive approach, known as
smart maintenance (SM). Recently, the transition to Maintenance 4.0 has been
experienced, where maintenance decisions based on data and advanced analytics
brought about by SM make it possible to increase efficiency, reduce operating costs
and have a major impact on operational performance. With the increasing
digitalization of processes and the availability of new technologies, decisions are
becoming smarter, which requires having a structured, data-driven decision-making
process for efficient decisions. However, making management decisions can be
complex due to the multiple criteria and points of view involved. For example, there
can be trade-offs and different competing priorities between functional areas such
as maintenance, production and finance. From this perspective, it is crucial to have
a methodology that combines these conflicting aspects, and in the Maintenance 4.0
era, the consideration of multiple criteria and points of view justifies the need for a
decision support framework that combines multi-criteria decision making (MCDM)
and Machine Learning (ML) techniques. A scoping review showed that there is a
lack of decision support methodologies (and frameworks) combining these
approaches in empirical studies and in emerging countries. In view of this, this
research aims to propose and apply a decision support framework for MS in a
Brazilian manufacturing company. A case study is used as the empirical method,
using real maintenance data, participant observation and interviews, as well as
document analysis. A hybrid multi-criteria approach is proposed using AHP,
MOORA, MULTIMORA and Borda methods with qualitative and quantitative
data, to solve a problem of ranking printers to be part of the start of predictive
maintenance. The computational implementation of the approaches that make up
the methodology took place in Python. At the end of the research, it was possible
to observe that the combination of MCDM and ML can be an effective approach to
improve decision-making in asset maintenance, considering multiple criteria and
the complexity of the data involved.
|
|||||||||||||
|