Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: STRATEGIES TO ENSURE PLANNING FEASIBILITY AND TIME CONSISTENCY IN DISCRETE MANUFACTURING PRODUCTION PROCESSES
Autor: DANIELLE DE MACEDO
Colaborador(es): BRUNO FANZERES DOS SANTOS - Orientador
PAULA MEDINA MACAIRA LOURO - Coorientador
Catalogação: 28/OUT/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55523&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55523&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55523
Resumo:
Traditionally, in discrete manufacturing industries, at the tactical level of production planning, the master production scheduling (MPS) is calculated, which establishes the quantity of each good to be produced per period. With the MPS in hand, the need for raw material is raised and the material requirement is carried out taking into account the lead time arrival of the parts, which is related to the transport mode previously defined by the company. Closer to the operation, the jobs scheduling is done with the purpose of meeting MPS planning. Typically, these four problems - definition of the transportation mode, preparation of master production scheduling, definition of the time to purchase materials and job scheduling - are dealt with at different times and often in a deterministic way. In this work we evaluate the financial and operational impact of carrying out the planning in a deterministic and segregated way. In particular, we assess: (i) the impact of stochasticity and co-optimization of production planning and purchasing decisions and (ii) the feasibility of job scheduling. For (i) a two-stage stochastic optimization model is proposed that co-optimizes production volume decisions, purchase moments and transportation mode. For (ii) sequencing constraints of jobs are added through a heuristic and a mathematical programming model. Empirical assessments are made through two numerical experiments with realistic data from a discrete manufacturing company. For (i) we observed 7 percent cost reduction in the operation for the year 2018 (planning year) and approximately 3.5 percent for 5000 simulated scenarios (out-of-sample), comparing the proposed two-stage model with the procedure typically adopted in the industry. For (ii) we also observed a reduction of 8 percent in the 2018 operation cost, and 9.6 percent for 50 simulated scenarios (out-of-sample), in relation to the model proposed in (i) and 13 percent in the 2018 operation cost and 15.6 percent for 50 simulated scenarios (out-of-sample), compared to the typical industry model.
Descrição: Arquivo:   
COMPLETE PDF