Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE RSI ALLOCATION PROBLEM: EXACT AND HEURISTIC METHODS
Autor: MARIANA ALVES LONDE
Colaborador(es): LUCIANA DE SOUZA PESSOA - Orientador
CARLOS EDUARDO DE ANDRADE - Coorientador
Catalogação: 06/JUL/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53566&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53566&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53566
Resumo:
Since its introduction, mobile wireless communication has grown and changed substantially. This massive growth leads to different levels of complexity, mainly concerned with the assignment of different parameters to radio or base stations. One parameter is the Root Sequence Index (RSI), related to the Physical Random Access Channel (PRACH) preambles, used to allocate uplink channels between the user equipment and the base station. The assignment of RSIs close-in-range to neighbor antennas may cause collisions, which are responsible for failures on service establishment, and therefore, performance degradation. Such allocation problems can be modeled as Graph Coloring Problems, including several additional constraints. However, few studies focus on RSI allocation and collisions from the optimization perspective. The objective of this study is to develop methods for allocating the RSI, trying to lessen the risk of collision, and obeying other constraints. In this study, both exact and heuristics methods are explored and compared. For this, several mathematical models were made, alongside a biased random key genetic algorithm. The results show that the utilization of an allocation strategy based on neighbor relations is efficient for finding good solutions.
Descrição: Arquivo:   
COMPLETE PDF