Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MATHEMATICAL PROGRAMMING MODEL FOR STRATEGIC PLANNING OF THE OIL SUPPLY CHAIN UNDER UNCERTAINTY
Autor: JULIEN PIERRE CASTELLO BRANCO
Colaborador(es): SILVIO HAMACHER - Orientador
Catalogação: 25/FEV/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37127
Resumo:
This work focuses on the study of Petrobras, regarding the strategic planning of the Company s investments, from an integrated oil supply chain perspective. From one of the most widely used mathematical models in the Company, several strategic decisions of great importance are supported, so as to maximize its operating result over a time horizon of approximately 10 (ten) years. Based in current literature, developments are proposed and tested in the mathematical model. First, two-stage stochastic programming techniques are introduced, where investment decisions are represented by first-stage variables; and system s operation – from oil refining and sales to the entire logistics issue – by second-stage variables, after realization of the stochastic parameters. In a second step, decomposition techniques are applied to circumvent any large scale limitations. The results show that the stochastic model starts to reach these limitations in problems with 30 scenarios or more. On the other hand, despite the considerably greater computational time, the decomposed model was able to solve up to 80-scenarios problems, during the tests.
Descrição: Arquivo:   
COMPLETE PDF