Título: | MATHEMATICAL PROGRAMMING MODEL FOR STRATEGIC PLANNING OF THE OIL SUPPLY CHAIN UNDER UNCERTAINTY | ||||||||||||
Autor: |
JULIEN PIERRE CASTELLO BRANCO |
||||||||||||
Colaborador(es): |
SILVIO HAMACHER - Orientador |
||||||||||||
Catalogação: | 25/FEV/2019 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.37127 | ||||||||||||
Resumo: | |||||||||||||
This work focuses on the study of Petrobras, regarding the strategic
planning of the Company s investments, from an integrated oil supply chain
perspective. From one of the most widely used mathematical models in the
Company, several strategic decisions of great importance are supported, so as to
maximize its operating result over a time horizon of approximately 10 (ten)
years. Based in current literature, developments are proposed and tested in the
mathematical model. First, two-stage stochastic programming techniques are
introduced, where investment decisions are represented by first-stage variables;
and system s operation – from oil refining and sales to the entire logistics issue –
by second-stage variables, after realization of the stochastic parameters. In a
second step, decomposition techniques are applied to circumvent any large scale
limitations. The results show that the stochastic model starts to reach these
limitations in problems with 30 scenarios or more. On the other hand, despite the
considerably greater computational time, the decomposed model was able to
solve up to 80-scenarios problems, during the tests.
|
|||||||||||||
|